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Fluid line growth in grid-generated isotropic 
turbulence 

By S. CORRSIN AND M. KARWEITT 
Mechanics Department, The Johns Hopkins University 

(Received 26 February 1969) 

Fluid material line growth in turbulent flow has been measured by tagging lines 
with small hydrogen bubbles in the nearly isotropic turbulence behind a regular 
grid in a water tunnel. The average three-dimensional line lengths were inferred 
by an intersection-counting method carried out on one-plane photographs. The 
measurements cover ‘small’ time intervals only. 

Introduction 
The importance of fluid material line growth in turbulent flow was emphasized 

first by Taylor (1938) in connexion with vorticity production by the growth of 
vortexlines. Vortex lines are approximately1 fluid lines, in high Reynolds number 
flows. Specifically, in high Reynolds number turbulence the larger scale behaviour 
of vortex lines is presumably that of fluid lines while geometrical traits of the 
order of the Kolmogorov microscale and smaller are strongly affected by viscous 
diffusion and destruction of vorticity. 

There is no reason to expect that the material lines which coincide with vortex 
lines grow at a rate typical of all material lines. In  fact the work of Reid cited 
below gives a definite difference in the growth fluctuations. 

The general question of fluid material line growth in isotropic turbulence was 
taken up theoretically by Batchelor (1952), who offered the plausible conjecture 
that asymptotically (for large enough time) in stationary homogeneous turbu- 
lence the number of eddies of each size acting to stretch a long fluid material 
line is just proportional to its length. This has as immediate consequence an 
exponentially growing mean line length. 

Apparently the only other paper directly on the subject is also a theoretical 
one, by Reid (1955). Following Batchelor, he estimated the growth in isotropic 
turbulence of a passive solenoidal axial vector field F whose field lines are fluid 
material lines, This last property excludes molecular diffusion, and can alter- 
natively be described by saying that the field ‘flux’ through any segment of 
fluid material area is independent of time. To make the moment problem deter- 
minate, Reid postulated that fourth moments could be expressed in terms of 
second moments as though the variables were jointly normal. This provided 
an estimate of the mean square value of line element length, F(t). But this does 
not include the information appropriate for estimating the average length 

t Also : Chesapeake Bay Institute. $ 1.e. for a limited time. 
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8(t), and our experiments provide no data on 62, so we pursue Reid’s analysis no 
further. 

This paper presents some measurements of mean line length for small times 
after marking, and offers as check a ‘small t’ analysis which permits the use of 
independently measured Eulerian frame properties. 

The experiment 
Approximate tagging of a fluid material line was achieved with the ‘hydrogen 

bubble’ electrolysis method (Geller 1954; Clutter & Smith 1961; Schraub, et al. 
1964; Mattingly 1966; Karweit 1968). A 0.001 in. platinum wire was stretched 
normal to the mean flow in a water tunnel, 18 mesh lengths behind a square- 
mesh round-rod turbulence generating grid. The grid solidity was 0.34, to match 
that used by Batchelor & Townsend (1948), because the Reynolds number in 
this experiment is closer to their low values than to that of other published. ex- 
periments. The mesh size is M = + in. and the mean speed is 4.0 in./sec, giving a 
grid Reynolds number R, E V M l v  = 1360, where v is kinematic viscosity. 
The rods were & in. h diameter. 

The water tunnel was made some years ago by Sparks & Hoelscher (1962).? 
It has an 8 in. square test section 48 in. in length. This length limitation pre- 
vented placing the tagging wire a more suitable distance (farther) from the grid 
(the turbulence may have detectable lateral inhomogeneity to z / M  = 30 or 40 
(Corrsin 1963)). x is distance from the grid. 

The free stream (empty tunnel) mean velocity field was slightly non-uniform, 
but the effect on line growth was within the uncertainty of the experiment. 

Figure 1 (plate 1) is a typical photograph from which fluid material line length 
was measured. Double lines had been generated to permit the study of relative 
dispersion, but that is another story. For material line growth, only the thinner 
member of each pair was analyzed. 

The analysis was carried out according to an equation relating the length of a 
three-dimensional, stationary, random, multiple-valued function to the number 
of cuts experienced by sampling planes making all angles with the axis (Corrsin & 
Phillips 1961, especially 5 6).  For a function which is statistically axisymmetric 
the relevant equation is 

x = 21in p(y) cos y sin y ti+, (1) 
0 

where K is the average contour length per unit axis length, thus the ratio of 
fluid material line length to initial length. y is the angle between the normal to 
any ‘sampling’ plane and the axis (the initial fluid material line configuration). 
p ( y )  is the average number of intersections between the random contour and all 
sampling planes at angle y. With a collection of plane photographs like figure 1, 
~ ( y )  is obtained for a downstream distance x by simply drawing a series of straight 
lines at  angle (&r-y)  to the axis (which is normal to the mean flow), counting 
intersections and averaging over enough cases to give reasonably small scatter. 

t See also Karweit (1968). 
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FIGURE 3. The integrand of equation (1) at seven downstream distances. Curve fairing 
was done on a ‘family’ basis. 
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Figure 2 shows a typical measurement of p(y), the case (x -z , ) /M =: 10. 
xo/M = 18 is the position of the tagging wire. p ( y )  must go to infinity for y = in, 
and it is inconvenient to measure for y > 80”. Furthermore, extrapolation is an 
uncertain business around singularities. Therefore, the extrapolation to y = +n 
was done for the product p(y) cosy sin y, figure 3. We have not yet established 
a general theoretical value for this product at  the boundary y = &r. In the simple 
case of a helical (single valued) contour it can be shown that the asymptotic be- 
haviour is 

p(y)  cosy sin y+ 4R/P + (in- y) .  (2) 
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FIGURE 4. Average fluid line length as a function of distance from tagging location 
( z / M  = 18 behind grid). The solid curve is B truncated power series evaluated to the 
cubic term by independent measurements (equation (27)). - - -, empirical curve from 
‘Lagrangian’ data points. -, empirical ‘small time’ curves estimated from ‘Eulerian 
data’. 

In  this special case the integrand has a maximum at y < $T. R is the radius of 
the helix, P is its wavelength (pitch). Figure 3 shows that p(y)  cosy sin y also 
has a maximum at y < &r for the experimental multiple-valued cases. 

The experimental result for relative mean fluid material line length ;ts a function 
of dimensionless time is plotted in figure 4. 

Eulerian estimate for small times 
In  order to check the accuracy of part of the experimental results, we can 

estimate the fluid line growth in terms of more commonly available (Eulerian 
or spatial frame) statistical properties of the turbulence. The comparison to be 
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shown is useful only for ‘small time’. Terms with higher powers oft include higher- 
order Eulerian moments, for which we have no data. 

In  a material (‘Lagrangian’) frame the position X of a fluid point can be con- 
sidered as a function of time t and of its position X, a t  a reference time t = 0:  

x = X(X,,t), (3) 

where x, E X(X,, 0). 

A material differential line element can be identified at time t by 

dA = X(X0 + dX0, t )  - X(X0, t ) .  (4) 

Expanding the first term on the right in series about X,, and truncating properly 
for infinitesimal d X ,  = &A,, we have 

where Cartesian co-ordinates are used for convenience. 
The length of a finite line is the line integral of the magnitudes 

The expression of A(t) = IA(t)I as a line integral with element dA, = d X ,  is 
simplest when the initial configuration is a straight line along a single Cartesian 
axis direction: 

A ( t )  =I:( (%)’+ ax,* (7)  

This corresponds to the experimental arrangement, ahol = dAo, = 0. 
The average length can be written as the integral of an averaged function when 

the method of averaging commutes with the integration operation. The ensemble 
average is an example, and we assume for simplicity that it is used: 

But we restrict to homogeneous turbulence, so all line elements undergo the same 
statistical history, and the average is independent of the integration. Therefore 

The experimental procedure is a combination of an ensemble average (photo- 
graphs taken at  different times, some of them hours apart) and a spatial average 
equally weighted along the %,-axis. 

For the limiting case of ‘very small time’ we can approximate the right side 
of (9) in terms of Eulerian frame statistical properties of the turbulence. These 
properties are ordinarily more accessible to both theory (because of the simpler 
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form of the Navier-Stokes equations) and experiment (because of the usefulness 
of the hot-wire anemometer). 

In general, 

Xi(X0, t )  = xoi + (10) 

and 

is the ‘Kronecker delta’, equal to 1 when i = lc, zero otherwise. With V(Xo, t )  
expanded in time series about t = 0, 

But these Lagrangian spatial derivatives at t = 0 are the same as Eulerian spatial 
derivatives because X, is defined as the value of X at t = 0. The Lagrangian 
a/at is the same as the Eulerian ‘Stokes derivative’. Equation (12) can therefore 
be written as 

Substituting this into (1 l), integrating term-by-term, and squaring, we get 
terms inside the square root of (9) like 

a2u + (3) ax, t = o  ( 3 . u . L )  atax, jaxjax, t=o t”+ ...) dt’dt’‘. 

Therefore 

t 3 +  .... (14) 

Also 

t’ 

a2u + (3) ax, t = o  ( atax, + u.  3axjax, 8) t = O  1” + . . .) dt’ dt”, 
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therefore 

(aX3/aXo2)z is the same as (14), but with u3 in place of ul. 
Next we substitute (14) and (15) into (9), expand the square root by the bi- 

nomial expansion, neglect all terms with powers of t higher than the third, and 
average. Further, we restrict to exactly isotropic turbulence, which must be 
homogeneous and decay with increasing time. The result is 

3% l+(y t 2 + [ ! " E i p ( % ) 2 ]  t3. 
A0 ax, t = O  2dt ax, ax, ax, t = O  

Experimental results related to these Eulerian moments in wind-tunnel 
turbulence behind a similar grid at  comparable Reynolds numbers are given by 
Batchelor & Townsend (1948). The second moments can be expressed in terms of 
velocity moments and the 'Taylor microscale', the abcissa-intercept of the 
Khrman-Howarth 'g-type' correlation function (see, for example, Hinze 1959, 

especially chapter 1) : - ___ 

The first part of the t3 coefficient can be expressed in the same variables if we me 
Taylor's energy decay equation 

Then 

The last step in this chain is a consequence of their observation that ( z h 2 )  
was nearly constant during an 'initial period' extending over perhaps 

20M < x < 100M. 

The third-order moment in (16) can be expressed in terms of a K&rmhn- 
Howarth triple correlation function. A simple demonstration starts with the 

Then the first term is dropped by homogeneity. By inspection of the series ex- 
pansion of the h(r) triple correlation function 
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and by expansion of the q(r)  triple correlation function, 
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h(r) and q(r)  can each be expressed in terms of the other or in terms of the more 
conveniently measured function k(r), in which all components are in the same 
direction. There results 

- - = - / y ' ( O )  = - - 
ax2 0 ax, 4 4 lo. ax1 , 
au, au, 2 38 

an oft-measured moment. For wide range of Reynolds numbers, it is found - 
empirically that 

The estimate for average line length in terms of easily measured Eulerian 
quantities is finally 

- 
- %  1+2-t  + - 2 O d + - L  t3, 
m) 

i? '""I *o A2 u: [ A4 10h3 

with 2 and h evaluated at  t = 0. 
This 'small time' estimate is used to check the results inferred from the 

hydrogen bubble photographs in the following way: the mean square turbulent 
velocity components along and across the mean flow direction were measured 
by exploiting the expression from Taylor's (1921) theory of 'diffusion by con- 
tinuous movements.', 

whence, for example, (24) 

XZ, and 3; were measured from the hydrogen-bubble line displacements, and 
(24) used t o  get u? = 0.046 cm2/sec2 and = 0-037 cm2/sec2. Prom axial sym- 
metry of the experiment we assume 2 = g. Since we are actually estimating 
velocity derivative statistics [such as ( a u , / a ~ ~ ) ~ ] ,  the expectation of some degree 
of local isotropy in the corresponding fine structure suggests that we use the 
estimate +uFk in place of u2 thus, 

___ 
in place of (17)) which is valid for exactly isotropic turbulence. Similarly, Qukuk 
was used in place of 

Having no data on h from this experiment, we turn to the Batchelor-Townsend 
(1948) data behind a similar grid. One of their least-scattered cases at  low 

t Batchelor & Townsend (1947) ; Stewart (1951) ; Mills et al. (1958). 

in the t3 term. 
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Reynolds number, RM = 5500, gives a (slightly extrapolated) microscale 
value of h = 0.10 cm at x / M  = 18, M = 1.27 cm. Since our grid Reynolds 
number is 1360, this h value must be rescaled. It is generally found that integral 
scale L is insensitive to grid Reynolds number differences. A principal Reynolds 
number effect is in the ratio of microscale to integral scale, a ratio for which we 
can use a K&rm&n-Howarth (1938) estimate (see also Batchelor (1953) or 
Hinze (1959)): 

A 1  1 
z - R, JX' 

-- 
Rh = J(G)h/v and RL = J(G)L/v. Since L / M  and @/U2 are insensitive to changes 
in the various Reynolds numbers, 

This relation is more likely to be accurate for turbulence a t  Reynolds numbers 
considerably larger than that in this experiment, but no better estimate is avail- 
able. Application of (26) gives h M 0.23 om for the present case. 

As proposed originally by Taylor, we compare the time variation of theoretical 
isotropic turbulence with the distance variation of stationary inhomogeneous 
nearly isotropic turbulence. The correspondence is Ax ct Dt for mean properties. 
The equation (22) with coefficients determined from hot-wire measurements 
of Eulerian quantities, as described above, becomes 

- 

R(t) M 1 +0-0194 
All 

This provides the two curves in the small inset part of figure 4. The points 
are values measured by the (essentially Lagrangian) line-tagging and inter- 
section-counting method. Unfortunately the Eulerian moments required for the 
coefficient of the (Ax)* term which extends (27) have not been measured. 

Inference of line growth in stationary turbulence 
The experimental results for K(t )  in figure 4 show no clear approach toward 

the asymptotic exponential growth anticipated by Batchelor. One obvious 
reason is that the total elapsed time (about 1-6 see) from tagging to the last measur- 
ing station may be scarcely larger than the basic Eulerian integral time scale 
TE which would be observed when travelling with the mean speed. There is 
some evidence that TE = O(Lf / , / ( z ) ) ,  where Lf is the integral length scale of 
the KArmhn-Howarth f ( r )  correlation function (Comte-Bellot & Corrsin, in 
preparation). For the present experiment this would give TE = 0 (1.9 sec). 

A second reason may be that the turbulence is decaying. Its characteristic 
velocity is decreasing while its characteristic scales are all growing. In  fact, the 

t Although this is it 'large Reynolds number ' estimate, it turns out to give fairly good 
agreement with experiment at moderate Reynolds numbers as well. 
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decay-term in the coefficient of t3, (16) or (22), is much larger than the third- 
moment term. Therefore a crude 'correction' for the effect of decay on the 
measured x(t) was tried. 

The simplest time rescaling is that proposed by Townsend (1951) : a new time 
T is defined by 

The 'corrected' curve, XIL us. T ,  shows no great change in character from 
so it is not presented here. 

us. T, 
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FIGURE 1. A typical photograph of growing lines of hydrogen bubbles initially normal 
to  the flow 18 mesh lengths behind the grid. The wire voltage is pulsed. 

(Facing p. 96) 




